"_I: B e E ZEk
Shanghai Innovation Institute

TVM FFI

Open ABI and FFI for
Machine Learning Systems

Siyuan Feng | 2025.12.27

The ML Ecosystem is Exploding with Innovation.. ": 5 o |

Shanghai Innovation Institute

Frameworks Specialized Libraries

®

o)

NN

of3eé

®

::e Flashinfer :(Z

—— FlashAttention

Triton O Torch Inductor

o Mojo [2] TileLang

Compilers & DSLs

...But this growth creates a massive
interoperability challenge.

The Interop Challenge Lives at the Core: ABI and FFI ’L e

Shanghai Innovation Institute

ABI- Application Binary Interface FFI - Foreign Function Interface

What it is: The mechanism for cross-language
communication, essential for ML (e.g., Python
and what happens when a function is called. calling C++).

What it is: Defines how data is stored in memory

] .) The Problem: Every DSL library, and framework needs
The Problem: "You can't just pass a ‘torch.Tensor : ; y. . I Y W.
custom runtime bindings for every environment,

ointer and expect it to work as a ‘cupy.NDArray . : :
P P PY Y leading to an N*M explosion of fragile connectors.

Our take: Diversity is fundamental and here to stay.

We need sustainable interoperability, not another framework.

From N*M Point-to-Point Chaos to a Universal Hub ’L T

Shanghai Innovation Institute

Point-to-Point Bindings Mix-and-Match
(O PyTorch v, g (O PyTorch IAX
- TVM FFI
Open ABI
))
:‘e Flashinfer we TileLang :‘e Flashinfer M TileLang

TVM FFl is an open, standalone ABI and FFIl for machine learning. It's not another compiler

or framework; it's the common ground that lets all other components amplify each other.

The Bedrock: A Stable C ABI " b al

Shanghai Innovation Institute

Cis the lingua franca of programming languages.

Building on it ensures maximum compatibility and
long-term stability.

Q Decouples from Python: Your compiled library is
agnostic to Python's ABI and version changes.

Q Decouples from Frameworks: Your library doesn‘t
need to link against PyTorch, JAX, etc.

Q Enables True Portability: Naturally enables cross-
language bindings because every language speaks C

Q Minimal & Stable: Provides a minimal set of stable
C APIs, making it a reliable target for compilers,
runtimes, and libraries.

The Data Highway: Zero-Copy Tensors with DLPack " s ol w

Shanghai Innovation Institute

4 R 4 R
PyTorch Triton
4) 4)
X GPU Tensor) Zero-Copy Transfer X GPU Tensor)
\ J \ J

For ML systems, performance is everything. DLPack is the community-driven standard that allows
massive GPU tensors to be shared between frameworks without expensive memory copies.

OPyTorch o8 N7 Numpy

First-class support for "torch.Tensor'. It's automatically and transparently converted for zero-copy transfer,
and the CUDA stream context is carried over seamlessly. It feels like a native PyTorch function call.

The Engine: Low-Overhead Packed Calls ’L s p 2 g

Shanghai Innovation Institute

p
A single, standard C function signature @ python’
('TVMFFISafeCallType') is used for all s ~

functions in a "type-erased" way. This ﬁ LSl \

avoids the need for declaring and JIT- ‘ int) Q

ing a unique shim for every FFl /
@ float

function.

L b PackedFunc

Flexibility: Easily handles calls from dynamic Performance: low overhead for Python-to-Ci+
languages (Python) and static languages (C++,

calls.
Rust).

Robustness: Built-in, thread-local error handling

that propagates exceptions and tracebacks across
the FFI boundary.

Efficiency: Arguments are packed on the stack,
avoiding heap allocation for calls.

The Ultimate Payoff: Ship One Wheel " E o %

Shanghai In n Institute

[My Library / DSL (mylib.so)]

l

TVM FFI ABI

(provided by pip install apache-tvm-ffi)

Python 3.10] [Python 3.11] [Python 3.12] [Python 3.13] [Python 3.x]
PyTorch] [JAX] [Numpy / Cupy
Cb] [Rust (experimental)

One compiled library. Works across all frameworks and Python versions.

Minimal example for Libraries L8

Shanghai Innovation Institute

Python Caller

Libraries : :
import tvm_ffi

#include <tvm/ffi/container/tensor.h> mod = tvm_ffi.load_module("add_one_cpu.so")

#include <tvm/ffi/function.h> .
import torch

x = torch.tensor([1, 2, 3, 4, 5])

void AddOne(y = torch.empty like(x)
tvm: :ffi::TensorView X, mod .add_one_cpu(x, y)
tvm::ffi::TensorView y, print(y)

) A

. . C++ Caller
int64 t n = x.size(9);

float* x _data = static_cast<float*>(x.data ptr());
float* y data = static_cast<float*>(y.data_ptr());
for (int64 t i = 0; i < n; ++i) {

#include <tvm/ffi/container/tensor.h>
#include <tvm/ffi/extra/module.h>

int main() {

y_data[i] = x_data[i] + 1; ffi::Tensor x = AllociDTensor({1, 2, 3, 4, 5});
} ffi::Tensor y = AllociDTensor({0, 0, 0, 0, 0});
} // Load shared library “add_one_cpu.so’

ffi::Module mod =
ffi::Module::LoadFromFile("add one_cpu.so");
// Look up “add one_cpu” function

TVM_FFI_DLL_EXPORT_TYPED_FUNC(add_one_ cpu, AddOne);

ffi::Function add_one_cpu = mod-
>GetFunction("add_one_cpu").value();
// Call the function
add_one_cpu(x, y);
}

Minimal C ABI as for DSL Compiler >

#include <tvm/ffi/c_api.h>
#include <tvm/ffi/extra/c_env_api.h>

TVM_FFI_DLL_EXPORT int _ tvm_ffi_add_one_cpu(
void* handle, const TVMFFIAny* args,
int32_t num_args, TVMFFIAny* result
) A

// Step 1.1. Extract “x := args[0]"

DLTensor* x;

if (args[@].type_index == kTVMFFIDLTensorPtr)
x = (DLTensor*)(args[0].v_ptr);

else if (args[@].type_index == kTVMFFITensor)
x = (DLTensor*)(args[@].v_c_str + sizeof(TVMFFIObject));

else {
TVMFFIErrorSetRaisedFromCStr ("ValueError", "Expects a Tensor input");
return -1;

}

// Step 1.2. Extract 'y := args[1]

DLTensor* y;

if (args[1].type_index == kTVMFFIDLTensorPtr)
y = (DLTensor*)(args[1].v_ptr);

else if (args[1].type_index == kTVMFFITensor)
y = (DLTensor*)(args[1].v_c_str + sizeof(TVMFFIObject));

else {
TVMFFIErrorSetRaisedFromCStr ("ValueError", "Expects a Tensor output");
return -1;

}

// Step 2. Perform add one: y = x + 1

for (int64_t i = @; i < x->shape[0]; ++i) {
((float*)y->data)[i] = ((float*)x->data)[i] + 1.0f;

}

// Step 3. Return error code © (success)

return 0;

B e EFK

Shanghai Innovation Institute

int Run(DLTensor* x, DLTensor* y) {
int ret_code = 0;
TVMFFIAny call_args[3] = {};
TVMFFIAny mod = {.type_index = kTVMFFINone, .v_obj = NULL};
TVMFFIAny func = {.type_index = kTVMFFINone, .v_obj = NULL};
TVMFFIAny none = {.type_index = kTVMFFINone}; // ignore the return value

// Step 1. Load module
// Equivalent to:
// mod = tvm::ffi::Module::LoadFromFile("/add_one cpu.so")

call args[0] = (TVMFFIAny){.type_index = kTVMFFIRawStr, .v_c_str = "add_one_cpu.so"};

call _args[1] = (TVMFFIAny){.type_index = kTVMFFISmallStr, .v_int64 = 0};

if ((ret_code = TVMFFIFunctionCall(fn_load_module, call_args, 2, &mod))) goto _RAII;

// Step 2. Get function “add_one_cpu’ from module
// Equivalent to:

// func = mod->GetFunction("add_one_cpu", /*query_imports=*/false).value()
call_args[@] = (TVMFFIAny){.type_index = mod.type_index, .v_obj = mod.v_obj};

call_args[1]
call_args[2]

(TVMFFIAny){.type_index
(TVMFFIANny){.type_index

kTVMFFIBool, .v_int64 = 0};

if ((ret_code = TVMFFIFunctionCall(fn_get_ function, call_args, 3, &func))) goto _RAII;

// Step 3. Call function “add_one_cpu(x, y)°

// Equivalent to:

// func(x, y)

call_args[@] = (TVMFFIAny){.type_index = kTVMFFIDLTensorPtr, .v_ptr = x};
call_args[1] = (TVMFFIAny){.type_index = kTVMFFIDLTensorPtr, .v_ptr = y};
if ((ret_code = TVMFFIFunctionCall(func.v_ptr, call_args, 2, &none))) goto

RAII:

if (mod.type_index >= kTVMFFIObject) TVMFFIObjectDecRef(mod.v_obj);
if (func.type_index >= kTVMFFIObject) TVMFFIObjectDecRef(func.v_obj);
if (none.type_index >= kTVMFFIObject) TVMFFIObjectDecRef(none.v_obj);
return ret_code;

}

kTVMFFIRawStr, .v_c_str = "add_one_cpu"};

_RAII;

1U

EFBEEZFK

Shanghai Innovation Institute

Inline Kernel and Agentic Flow

import torch
import tvm_ffi.cpp)) 'S)
Directly compile and load inline a module in python.

mod = tvm_ffi.cpp.load inline(
cuda_sources=p""" Useful for coding agents to generate kernels in the loop.
__global__ void AddOneKernel(float* x, float* y, int n) {

// Kernel Impl

} ‘
void add_one_cuda(tvm::ffi::TensorView x, tvm::ffi::TensorView y) { — Kernel |mp|ementati0n

TVM_FFI_ICHECK(x.ndim() == 1) << "x must be a 1D tensor";

... // implementation of a library function

int64_t nthread_per_block = 256, n = x.size(0); <—-___________

int64_t nblock = (n + nthread_per_block - 1) / nthread per_block; —— ——— Host code for launching kernel

cudaStream t stream = static_cast<cudaStream t>(
TVMFFIEnvGetStream(x.device().device type, x.device().device id));

AddOneKernel<<<nblock, nthread_per block, 0, stream>>>(—

static_cast<float*>(x.data ptr()), static_cast<float*>(y.data ptr()), n \ Automatically Capture current CUda stream

)s
}

non
)

functions=["add_one_cuda"],

~___— Function call with native torch tensor

x = torch.tensor([1, 2, 3, 4, 5], dtype=torch.float
y = torch.empty like(x)

mod.add one_cuda(x, y)

11

CuteDSL Integration: Native TVM-

@cute.kernel
def device add one(a: cute.Tensor, b: cute.Tensor):
for i in range(a.shape[0]):
b[i] = a[i] + 1

@cute.jit
def add one(a: cute.Tensor, b: cute.Tensor):
"""p = a + 1"""
device add one(a, b).launch(grid=(1, 1, 1), block=(1, 1, 1))

def main():
a_torch = torch.arange(10, dtype=torch.float32, device="cuda")
b_torch = torch.zeros(10, dtype=torch.float32, device="cuda")
a_cute = from_dlpack(a_torch, enable_tvm_ffi=True).mark_layout_dynamic ()
b_cute = from_dlpack(b_torch, enable_tvm_ffi=True).mark_layout_dynamic()
compiled_add one = cute.compile(add one, a_cute, b_cute, options="--enable-tvm-ffi")

os.makedirs("./build", exist ok=True)

object_file path = "./build/add_one.o"

lib_path = "./build/add_one.so"

compiled add one.export to c(object file path, function name="add one")

shared 1ibs = cute.runtime.find_runtime_libraries(enable_tvm_ ffi=True)
cmd = ["gec”, "-shared”, "-o", lib_path, object_file_path, *shared_libs]
subprocess.run(cmd, check=True)
print(f"Successfully created shared library: {lib_path}")
if _name__ == "_main__ ":
main()

/

V.

’.ti%ﬁﬂ%’%‘-ﬂ:?—.

Shanghai Innovation Institute

Enable TVM-FFI by adding options

Support both AOT and JIT mode

Interoperability with ML Frameworks

12

TileLang Integration: TVM-FFI + TVM Host Codegen

Device: H800

30 - Per-call CPU Overhead

g

\\3 d ((\‘?::\s 366 xoo* ge‘:\‘“r,(\o‘mge‘“m ﬁ\“a
e\e‘“

N
w
1

N

microseconds (us)
— —
O U'l

Operator

Migrate tensor checks (dim, shape, stride, etc.)

from Python to C++.

seconds (s)

EFBEEZFK

Shanghai Innovation Institute
First Compile Time
N TVM-FFI

B Cython
-® Cython/TVM-FFI (x)

~[2.1x

0 - 1 1 U)
@ 4d \'d N 0 o
50“, “a d ma\,‘N‘ e 2 xoP qeﬂ“ms(\o ge(“
ee™

Operator

TVM-FFI can generate and load cubin file instead
of compiling into so.

13

A Unified Foundation for the Entire ML Stack

For Kernel DSLs
A reusable ABI for JIT and AOT
kernel exposure to runtimes.
(e.g., Triton, TileLang)

2%
w

For Kernel Libraries
Ship a single package to support
multiple frameworks, Python versions,
and languages, (e.g., Flashinfer)

Generates
Kernel

Targets TVM

— -

FFl ABI

B8 8 FkK

Shanghai Innovation Institute

B

AN
For Agentic Coding

Directly compile and load inline a
module in Python.

Deploys
Everywhere

-

14

o

An Open Convention, Evolving with the C ’ Y

Shanghai Innovation Institute

TVM FFl is an open project that draws tte ML Systems community. TVM FFl is an open
project that draws on the collective wisdom of the ML Systems community.

Acknowledged Insights From Active Collaborations & Adopters
.
h tVI l | TileLang
NS " A“
N:: NumPy '.’f:::fé:":" CuPy R~ Flashinfer <2 CuteDSL

This isn't a top-down mandate; it’s a bottom-up collaboration to build shared infrastructure.

15

Amplify the ML Systems Ecosystem. ’: 5 o 2

Shanghai Innovation Institute

Get Started Now:
THE

APACHE

SOFTWARE FOUNDATION

VM

pip install apache-tvm-ffi

pip install torch-c-dlpack-ext # if torch <= 2.9

Explore the Project:
GitHub: https://github.com/apache/tvm-ffi

Quick Start : https://tvm.apache.org/ffi/get_started/quickstart.html

An open ABI is the foundation for the next wave of innovation in Al infrastructure

16

One More Thing... ’J: 5 ol

Shanghai Innovation Institute

- ™ :

TVM Compiler Stack TVM Compiler Stack

| ﬁ TBD
, ‘ TIR(X)
| % TVM FFI

— e e e e e e e e e e e e = = e

— ()

®

> o
Ne)

2 >

\N———————————————————————————————————’

TVM is transforming from an end-to-end Al compiler into the core infrastructure for Al

compilers and ML systems.

17

Different fror

Top-Down Approach: evolved from a
mature, end-to-end compiler

Out-of-Box Usage: each components are
self-contained as a part of compiler

End-to-end Example: Remaining Apache
TVM as an e2e compiler example

TVM's Family

:: B e EFK

Shanghai Innovation Institute

Bottom-Up Trajectory: built as a
flexible framework for compiler design.

Flexible to Customized: everything in MLIR
should be written as a customized dialect

Compiler Framework: Focus on providing
framework rather than a compiler

MLIR

’J: 50 SR

% nans

;'IIPE
2 ik

-
-
c
—

19

	Slide 1: TVM FFI
	Slide 2: The ML Ecosystem is Exploding with Innovation..
	Slide 3: The Interop Challenge Lives at the Core: ABI and FFI
	Slide 4: From N*M Point-to-Point Chaos to a Universal Hub
	Slide 5: The Bedrock: A Stable C ABI
	Slide 6: The Data Highway: Zero-Copy Tensors with DLPack
	Slide 7: The Engine: Low-Overhead Packed Calls
	Slide 8: The Ultimate Payoff: Ship One Wheel
	Slide 9: Minimal example for Libraries
	Slide 10: Minimal C ABI as for DSL Compilers
	Slide 11: Inline Kernel and Agentic Flow
	Slide 12: CuteDSL Integration: Native TVM-FFI
	Slide 13: TileLang Integration: TVM-FFI + TVM Host Codegen
	Slide 14: A Unified Foundation for the Entire ML Stack
	Slide 15: An Open Convention, Evolving with the Community
	Slide 16: Amplify the ML Systems Ecosystem.
	Slide 17: One More Thing…
	Slide 18: Different from MLIR
	Slide 19: Thanks

