
TVM FFI

Siyuan Feng | 2025.12.27

Open ABI and FFI for
Machine Learning Systems

2

The ML Ecosystem is Exploding with Innovation..

Frameworks Specialized Libraries

…But this growth creates a massive
interoperability challenge.

Triton

TileLang

Torch Inductor

FlashAttention

Emerging Tools

Compilers & DSLs

3

The Interop Challenge Lives at the Core: ABI and FFI

ABI- Application Binary Interface

What it is: Defines how data is stored in memory

and what happens when a function is called.

FFI - Foreign Function Interface
What it is: The mechanism for cross-language
communication, essential for ML (e.g., Python
calling C++).

The Problem: "You can't just pass a `torch.Tensor`
pointer and expect it to work as a `cupy.NDArray`

The Problem: Every DSL library, and framework needs
custom runtime bindings for every environment,
leading to an N*M explosion of fragile connectors.

Our take: Diversity is fundamental and here to stay.

We need sustainable interoperability, not another framework.

4

From N*M Point-to-Point Chaos to a Universal Hub

JAX

TVM FFI
Open ABI

Point-to-Point Bindings Mix-and-Match

TVM FFI is an open, standalone ABI and FFI for machine learning. It's not another compiler
or framework; it's the common ground that lets all other components amplify each other.

JAX

TileLang TileLang

5

The Bedrock: A Stable C ABI

C is the lingua franca of programming languages.
Building on it ensures maximum compatibility and
long-term stability.

Decouples from Python: Your compiled library is
agnostic to Python's ABI and version changes.

Decouples from Frameworks: Your library doesn‘t
need to link against PyTorch, JAX, etc.

Enables True Portability: Naturally enables cross-
language bindings because every language speaks C

Minimal & Stable: Provides a minimal set of stable
C APIs, making it a reliable target for compilers,
runtimes, and libraries.

6

The Data Highway: Zero-Copy Tensors with DLPack

PyTorch

GPU Tensor

Triton

Zero-Copy Transfer

For ML systems, performance is everything. DLPack is the community-driven standard that allows
massive GPU tensors to be shared between frameworks without expensive memory copies.

First-class support for `torch.Tensor`. It's automatically and transparently converted for zero-copy transfer,
and the CUDA stream context is carried over seamlessly. It feels like a native PyTorch function call.

GPU Tensor

7

A single, standard C function signature

('TVMFFlSafeCallType') is used for all

functions in a "type-erased" way. This

avoids the need for declaring and JIT-

ing a unique shim for every FFI

function.

The Engine: Low-Overhead Packed Calls

Tensor

float

int

Flexibility: Easily handles calls from dynamic
languages (Python) and static languages (C++,
Rust).

Performance: low overhead for Python-to-C++
calls.

Efficiency: Arguments are packed on the stack,
avoiding heap allocation for calls.

Robustness: Built-in, thread-local error handling
that propagates exceptions and tracebacks across
the FFI boundary.

PackedFunc

8

One compiled library. Works across all frameworks and Python versions.

The Ultimate Payoff: Ship One Wheel

My Library / DSL (mylib.so)

TVM FFI ABI
(provided by pip install apache–tvm-ffi)

Python 3.10 Python 3.11 Python 3.12 Python 3.13 Python 3.x

PyTorch

C++ Rust (experimental)

JAX Numpy / Cupy

9

Minimal example for Libraries

#include <tvm/ffi/container/tensor.h>

#include <tvm/ffi/function.h>

void AddOne(

tvm::ffi::TensorView x,

tvm::ffi::TensorView y,

) {

int64_t n = x.size(0);

float* x_data = static_cast<float*>(x.data_ptr());

float* y_data = static_cast<float*>(y.data_ptr());

for (int64_t i = 0; i < n; ++i) {

y_data[i] = x_data[i] + 1;

}

}

TVM_FFI_DLL_EXPORT_TYPED_FUNC(add_one_cpu, AddOne);

import tvm_ffi
mod = tvm_ffi.load_module("add_one_cpu.so")

import torch
x = torch.tensor([1, 2, 3, 4, 5])
y = torch.empty_like(x)
mod.add_one_cpu(x, y)
print(y)

#include <tvm/ffi/container/tensor.h>
#include <tvm/ffi/extra/module.h>

int main() {
ffi::Tensor x = Alloc1DTensor({1, 2, 3, 4, 5});
ffi::Tensor y = Alloc1DTensor({0, 0, 0, 0, 0});
// Load shared library `add_one_cpu.so`
ffi::Module mod =

ffi::Module::LoadFromFile("add_one_cpu.so");
// Look up `add_one_cpu` function
ffi::Function add_one_cpu = mod-

>GetFunction("add_one_cpu").value();
// Call the function
add_one_cpu(x, y);

}

Python Caller

C++ Caller
add_one

_cpu.so

Libraries

10

Minimal C ABI as for DSL Compilers
#include <tvm/ffi/c_api.h>
#include <tvm/ffi/extra/c_env_api.h>

TVM_FFI_DLL_EXPORT int __tvm_ffi_add_one_cpu(
void* handle, const TVMFFIAny* args,

int32_t num_args, TVMFFIAny* result

) {
// Step 1.1. Extract `x := args[0]`

DLTensor* x;

if (args[0].type_index == kTVMFFIDLTensorPtr)
x = (DLTensor*)(args[0].v_ptr);

else if (args[0].type_index == kTVMFFITensor)

x = (DLTensor*)(args[0].v_c_str + sizeof(TVMFFIObject));
else {

TVMFFIErrorSetRaisedFromCStr("ValueError", "Expects a Tensor input");

return -1;
}

// Step 1.2. Extract `y := args[1]`

DLTensor* y;
if (args[1].type_index == kTVMFFIDLTensorPtr)

y = (DLTensor*)(args[1].v_ptr);

else if (args[1].type_index == kTVMFFITensor)
y = (DLTensor*)(args[1].v_c_str + sizeof(TVMFFIObject));

else {

TVMFFIErrorSetRaisedFromCStr("ValueError", "Expects a Tensor output");
return -1;

}

// Step 2. Perform add one: y = x + 1
for (int64_t i = 0; i < x->shape[0]; ++i) {

((float*)y->data)[i] = ((float*)x->data)[i] + 1.0f;

}
// Step 3. Return error code 0 (success)

return 0;

}

int Run(DLTensor* x, DLTensor* y) {
int ret_code = 0;

TVMFFIAny call_args[3] = {};

TVMFFIAny mod = {.type_index = kTVMFFINone, .v_obj = NULL};
TVMFFIAny func = {.type_index = kTVMFFINone, .v_obj = NULL};

TVMFFIAny none = {.type_index = kTVMFFINone}; // ignore the return value

// Step 1. Load module

// Equivalent to:

// mod = tvm::ffi::Module::LoadFromFile("/add_one_cpu.so")
call_args[0] = (TVMFFIAny){.type_index = kTVMFFIRawStr, .v_c_str = "add_one_cpu.so"};

call_args[1] = (TVMFFIAny){.type_index = kTVMFFISmallStr, .v_int64 = 0};

if ((ret_code = TVMFFIFunctionCall(fn_load_module, call_args, 2, &mod))) goto _RAII;

// Step 2. Get function `add_one_cpu` from module

// Equivalent to:
// func = mod->GetFunction("add_one_cpu", /*query_imports=*/false).value()

call_args[0] = (TVMFFIAny){.type_index = mod.type_index, .v_obj = mod.v_obj};

call_args[1] = (TVMFFIAny){.type_index = kTVMFFIRawStr, .v_c_str = "add_one_cpu"};
call_args[2] = (TVMFFIAny){.type_index = kTVMFFIBool, .v_int64 = 0};

if ((ret_code = TVMFFIFunctionCall(fn_get_function, call_args, 3, &func))) goto _RAII;

// Step 3. Call function `add_one_cpu(x, y)`

// Equivalent to:

// func(x, y)
call_args[0] = (TVMFFIAny){.type_index = kTVMFFIDLTensorPtr, .v_ptr = x};

call_args[1] = (TVMFFIAny){.type_index = kTVMFFIDLTensorPtr, .v_ptr = y};

if ((ret_code = TVMFFIFunctionCall(func.v_ptr, call_args, 2, &none))) goto _RAII;

_RAII:

if (mod.type_index >= kTVMFFIObject) TVMFFIObjectDecRef(mod.v_obj);
if (func.type_index >= kTVMFFIObject) TVMFFIObjectDecRef(func.v_obj);

if (none.type_index >= kTVMFFIObject) TVMFFIObjectDecRef(none.v_obj);

return ret_code;
}

11

Inline Kernel and Agentic Flow
import torch

import tvm_ffi.cpp

mod = tvm_ffi.cpp.load_inline(

cuda_sources=r"""

__global__ void AddOneKernel(float* x, float* y, int n) {

// Kernel Impl ...

}

void add_one_cuda(tvm::ffi::TensorView x, tvm::ffi::TensorView y) {

TVM_FFI_ICHECK(x.ndim() == 1) << "x must be a 1D tensor";

... // implementation of a library function

int64_t nthread_per_block = 256, n = x.size(0);

int64_t nblock = (n + nthread_per_block - 1) / nthread_per_block;

cudaStream_t stream = static_cast<cudaStream_t>(

TVMFFIEnvGetStream(x.device().device_type, x.device().device_id));

AddOneKernel<<<nblock, nthread_per_block, 0, stream>>>(

static_cast<float*>(x.data_ptr()), static_cast<float*>(y.data_ptr()), n

);

}

""",

functions=["add_one_cuda"],

)

x = torch.tensor([1, 2, 3, 4, 5], dtype=torch.float32).cuda()

y = torch.empty_like(x)

mod.add_one_cuda(x, y)

Directly compile and load inline a module in python.

Useful for coding agents to generate kernels in the loop.

Kernel Implementation

Host code for launching kernel

Function call with native torch tensor

Automatically capture current cuda stream

12

CuteDSL Integration: Native TVM-FFI
@cute.kernel

def device_add_one(a: cute.Tensor, b: cute.Tensor):

for i in range(a.shape[0]):

b[i] = a[i] + 1

@cute.jit

def add_one(a: cute.Tensor, b: cute.Tensor):

"""b = a + 1"""

device_add_one(a, b).launch(grid=(1, 1, 1), block=(1, 1, 1))

def main():

a_torch = torch.arange(10, dtype=torch.float32, device="cuda")

b_torch = torch.zeros(10, dtype=torch.float32, device="cuda")

a_cute = from_dlpack(a_torch, enable_tvm_ffi=True).mark_layout_dynamic()

b_cute = from_dlpack(b_torch, enable_tvm_ffi=True).mark_layout_dynamic()

compiled_add_one = cute.compile(add_one, a_cute, b_cute, options="--enable-tvm-ffi")

os.makedirs("./build", exist_ok=True)

object_file_path = "./build/add_one.o"

lib_path = "./build/add_one.so"

compiled_add_one.export_to_c(object_file_path, function_name="add_one")

shared_libs = cute.runtime.find_runtime_libraries(enable_tvm_ffi=True)

cmd = ["gcc", "-shared", "-o", lib_path, object_file_path, *shared_libs]

subprocess.run(cmd, check=True)

print(f"Successfully created shared library: {lib_path}")

if __name__ == "__main__":

main()

Enable TVM-FFI by adding options

Support both AOT and JIT mode

Interoperability with ML Frameworks

13

TileLang Integration: TVM-FFI + TVM Host Codegen

Migrate tensor checks (dim, shape, stride, etc.)
from Python to C++.

TVM-FFI can generate and load cubin file instead
of compiling into so.

14

A Unified Foundation for the Entire ML Stack

For Kernel Libraries
Ship a single package to support

multiple frameworks, Python versions,
and languages, (e.g., Flashlnfer)

For Kernel DSLs
A reusable ABI for JIT and AOT
kernel exposure to runtimes.

(e.g., Triton, TileLang)

For Agentic Coding
Directly compile and load inline a

module in Python.

Generates
Kernel

Targets TVM
FFI ABI

Deploys
Everywhere

15

TVM FFI is an open project that draws tte ML Systems community. TVM FFI is an open

project that draws on the collective wisdom of the ML Systems community.

An Open Convention, Evolving with the Community

Acknowledged Insights From Active Collaborations & Adopters

This isn't a top-down mandate; it’s a bottom-up collaboration to build shared infrastructure.

TileLang

CuteDSL

16

Get Started Now:

Amplify the ML Systems Ecosystem.

Explore the Project:

GitHub: https://github.com/apache/tvm-ffi

Quick Start : https://tvm.apache.org/ffi/get_started/quickstart.html

pip install apache-tvm-ffi

pip install torch-c-dlpack-ext # if torch <= 2.9

An open ABI is the foundation for the next wave of innovation in Al infrastructure

17

One More Thing…

TVM is transforming from an end-to-end AI compiler into the core infrastructure for AI
compilers and ML systems.

Graph

Runtime & FFI

Tensor

TVM Compiler Stack

TBD

TVM FFI

TIR(X)

TVM Compiler Stack

18

Different from MLIR

TVM's Family MLIR

Top-Down Approach: evolved from a
mature, end-to-end compiler

Bottom-Up Trajectory: built as a
flexible framework for compiler design.

Out-of-Box Usage: each components are
self-contained as a part of compiler

Flexible to Customized: everything in MLIR
should be written as a customized dialect

End-to-end Example: Remaining Apache
TVM as an e2e compiler example

Compiler Framework: Focus on providing
framework rather than a compiler

19

Thanks

	Slide 1: TVM FFI
	Slide 2: The ML Ecosystem is Exploding with Innovation..
	Slide 3: The Interop Challenge Lives at the Core: ABI and FFI
	Slide 4: From N*M Point-to-Point Chaos to a Universal Hub
	Slide 5: The Bedrock: A Stable C ABI
	Slide 6: The Data Highway: Zero-Copy Tensors with DLPack
	Slide 7: The Engine: Low-Overhead Packed Calls
	Slide 8: The Ultimate Payoff: Ship One Wheel
	Slide 9: Minimal example for Libraries
	Slide 10: Minimal C ABI as for DSL Compilers
	Slide 11: Inline Kernel and Agentic Flow
	Slide 12: CuteDSL Integration: Native TVM-FFI
	Slide 13: TileLang Integration: TVM-FFI + TVM Host Codegen
	Slide 14: A Unified Foundation for the Entire ML Stack
	Slide 15: An Open Convention, Evolving with the Community
	Slide 16: Amplify the ML Systems Ecosystem.
	Slide 17: One More Thing…
	Slide 18: Different from MLIR
	Slide 19: Thanks

